De Novo Synthesis of α-Oligo(arylfuran)s and Its Application in OLED as Hole-Transporting Material.

Chemistry (Weinheim an der Bergstrasse, Germany)(2023)

Cited 0|Views11
No score
Abstract
Tuning the photophysical properties of π-conjugated oligomers by functionalization of skeleton, to achieve an optically and electronically advantageous building block for organic semiconductor materials is a vital yet challenging task. In this work, a series of structurally well-defined polyaryl-functionalized α-oligofurans, in which aryl groups are introduced precisely into each of the furan units, are rapidly and efficiently synthesized by de novo metal-free synthesis of α-bi(arylfuran) monomers for the first time. This new synthetic strategy nicely circumvents the cumbersome substituent introduction process in the later stage by the preinstallation of the desired aryl groups in the starting material. The characterization of α-oligo(arylfuran)s demonstrates that photoelectric properties of coplanar α-oligo(arylfuran)s can be tuned through varying aryl groups with different electrical properties. These novel α-oligo(arylfuran)s have good hole transport capacity and can function as hole-transporting layers in organic light-emitting diodes, which is indicative of significant breakthrough in the application of α-oligofurans materials in OLEDs. And our findings offer an avenue for the ingenious use of α-oligo(arylfuran)s as p-type organic semiconductors for OLEDs.
More
Translated text
Key words
OLED,cycloisomerization,hole-transporting material,α-oligofuran
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined