Complete Characterization of Quantum Correlations by Randomized Measurements

PHYSICAL REVIEW LETTERS(2023)

引用 0|浏览10
暂无评分
摘要
The fact that quantum mechanics predicts stronger correlations than classical physics is an essential cornerstone of quantum information processing. Indeed, these quantum correlations are a valuable resource for various tasks, such as quantum key distribution or quantum teleportation, but characterizing these correlations in an experimental setting is a formidable task, especially in scenarios where no shared reference frames are available. By definition, quantum correlations are reference-frame independent, i.e., invariant under local transformations; this physically motivated invariance implies, however, a dedicated mathematical structure and, therefore, constitutes a roadblock for an efficient analysis of these correlations in experiments. Here we provide a method to directly measure any locally invariant property of quantum states using locally randomized measurements, and we present a detailed toolbox to analyze these correlations for two quantum bits. We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation and their potential to display quantum nonlocality in its simplest form. Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits in the architecture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要