Chrome Extension
WeChat Mini Program
Use on ChatGLM

Modeling polar order in compressively strained SrTiO3

PHYSICAL REVIEW B(2022)

Cited 0|Views3
No score
Abstract
Strontium titanate is an incipient ferroelectric in which superconductivity emerges at exceptionally low doping levels. Remarkably, stabilizing the polar phase through strain or chemical substitution has been shown to significantly enhance the superconducting critical temperature, and the polar instability plays a pivotal role in most proposed superconducting pairing mechanisms. A rigorous understanding of ferroelectricity is therefore essential to elucidate the electron pairing mechanism in this material. To investigate the nature of the polar order in strontium titanate, we develop a simplified free energy model that only includes the degrees of freedom necessary to capture the relevant physics in a biaxially compressively strained system. Our model can calculate the energies of large, disordered systems with near density functional theory-level accuracy. We simulate the ferroelectric and antiferrodistortive phase transitions using the Monte Carlo method and discuss the coupling between various order parameters. Finally, we assess the character of the polar transition, which we find to be neither strictly displacive nor order-disorder.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined