On Eigenvalue Gaps of Integer Matrices

arxiv(2022)

引用 0|浏览12
暂无评分
摘要
Given an $n\times n$ matrix with integer entries in the range $[-h,h]$, how close can two of its distinct eigenvalues be? The best previously known examples have a minimum gap of $h^{-O(n)}$. Here we give an explicit construction of matrices with entries in $[0,h]$ with two eigenvalues separated by at most $h^{-n^2/16+o(n^2)}$. Up to a constant in the exponent, this agrees with the known lower bound of $\Omega((2\sqrt{n})^{-n^2}h^{-n^2})$ \cite{mahler1964inequality}. Bounds on the minimum gap are relevant to the worst case analysis of algorithms for diagonalization and computing canonical forms of integer matrices (e.g. \cite{dey2021bit}). In addition to our explicit construction, we show there are many matrices with a slightly larger gap of roughly $h^{-n^2/32}$. We also construct 0-1 matrices which have two eigenvalues separated by at most $2^{-n^2/64+o(n^2)}$.
更多
查看译文
关键词
eigenvalue gaps,integer matrices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要