谷歌浏览器插件
订阅小程序
在清言上使用

miR-216b-5p regulates proliferation and apoptosis of ox-LDL-stimulated VSMCs and HUVECs via IGF2.

Journal of biochemical and molecular toxicology(2022)

引用 0|浏览29
暂无评分
摘要
Atherosclerosis (AS) is one of the principal causes of cardiovascular disorder. Reportedly, vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) play key roles in AS development, and microRNAs (miRNAs) regulate their functions. The function of miR-216b-5p in AS remains unknown. Human VSMCs and human HUVECs were treated with ox-LDL to establish the in vitro model of AS. MiR-216b-5p and IGF2 expressions in VSMCs and HUVECs were probed by qRT-PCR and western blot. The viability, cell cycle progression, and apoptosis of VSMCs and HUVECs were evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine, and flow cytometry assays, respectively. The binding sites between IGF2 3'UTR and miR-216b-5p were validated by dual-luciferase reporter assay. miR-216b-5p expression was declined in ox-LDL-induced VSMCs and HUVECs. In VSMCs, miR-216b-5p overexpression inhibited excessive proliferation and induced apoptosis. MiR-216b-5p could markedly restrain the viabiblity of VSMCs induced by ox-LDL and enhanced the viability of HUVECs. Additionally, IGF2 was confirmed as the direct target of miR-216b-5p and transfection of IGF2 overexpression plasmids rescued the effects of miR-216b-5p on VSMCs and HUVECs. miR-216b-5p alleviates the dysfunction of VSMCs and HUVECs caused by ox-LDL via repressing IGF2, and exerts protective functions to block the development of AS.
更多
查看译文
关键词
IGF2,atherosclerosis,miR-216b-5p,ox-LDL
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要