Structure-Based Drug Design and Synthesis of Novel N -Aryl-2,4-bithiazole-2-amine CYP1B1-Selective Inhibitors in Overcoming Taxol Resistance in A549 Cells.

Journal of medicinal chemistry(2022)

引用 3|浏览6
暂无评分
摘要
As a promising therapeutic target for cancer, CYP1B1 is overexpressed in Taxol-resistant A549 cells; however, its role in drug resistance still remains unclear. Bioinformatic analysis data indicated that CYP1B1 was closely correlated with AKT/ERK1/2 and focal adhesion pathways, thereby playing an important role in Taxol resistance and cancer migration/invasion. Along similar lines, the AhR agonist 7,12-dimethylbenz[]anthracene (DMBA) enhanced Taxol resistance and promoted migration/invasion of A549 and H460 cells likely stemming from CYP1B1 upregulation. Moreover, 83 novel -aryl-2,4-bithiazole-2-amine CYP1B1-selective inhibitors were designed and synthesized to verify the role of CYP1B1 in Taxol-resistant A549 cells. Impressively, the most potent and selective one, namely, , remarkably inhibited AKT/ERK1/2 and FAK/SRC pathways and thereby reversed Taxol resistance as well as inhibited both migration and invasion of A549/Taxol cells. Collectively, this study not only displayed the role of CYP1B1 in Taxol resistance and cancer migration/invasion but also helped unlock the CYP1B1-oriented anticancer discovery.
更多
查看译文
关键词
overcoming taxol resistance,inhibitors,drug design,structure-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要