Influence of central sidechain on self-assembly of glycine-x-glycine peptides.

Soft matter(2023)

引用 2|浏览13
暂无评分
摘要
Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence possibilities and, therefore, engineered properties. This work examines the propensity of the GxG peptide family, where x denotes a guest residue, to self-assemble into fibril networks changes in pH and ethanol concentration. These triggers for gelation are motivated by recent work on GHG and GAG, which unexpectedly self-assemble into centimeter long fibril networks with unique rheological properties. The propensity of GxG peptides to self-assemble, and the physical and chemical properties of the self-assembled structures are characterized by microscopy, spectroscopy, rheology, and X-ray diffraction. Interestingly, we show that the number, length, size, and morphology of the crystalline self-assembled aggregates depend significantly on the x-residue chemistry and the solution conditions, pH, temperature, peptide concentration, The different x-residues allow us to probe the importance of different peptide interactions, π-π stacking, hydrogen bonding, and hydrophobicity, on the formation of fibrils. We conclude that fibril formation requires π-π stacking interactions in pure water, while hydrogen bonding can form fibrils in the presence of ethanol-water solutions. These results validate and support theoretical arguments on the propensity for self-assembly and leads to a better understanding of the relationship between peptide chemistry and fibril self-assembly. Overall, GxG peptides constitute a unique family of peptides, whose characterization will aid in advancing our understanding of self-assembly driving forces for fibril formation in peptide systems.
更多
查看译文
关键词
peptides,central sidechain,self-assembly,glycine-x-glycine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要