Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4

Molecules (Basel, Switzerland)(2022)

Cited 2|Views6
No score
Abstract
Environmental pollution, especially water pollution, is becoming increasingly serious. Organic dyes are one type of the harmful pollutants that pollute groundwater and destroy ecosystems. In this work, a series of graphitic carbon nitride (g-C3N4)/ZnO photocatalysts were facilely synthesized through a grinding method using ZnO nanoparticles and g-C3N4 as the starting materials. According to the results, the photocatalytic performance of 10 wt.% CN-200/Z-500 (CN-200, which g-C3N4 was 200 kGy, referred to the irradiation metering. Z-500, which ZnO was 500 degrees C, referred to the calcination temperature) with the CN-200 exposed to electron beam radiation was better than those of either Z-500 or CN-200 alone. This material displayed a 98.9% degradation rate of MB (20 mg/L) in 120 min. The improvement of the photocatalytic performance of the 10 wt.% CN-200/Z-500 composite material was caused by the improvement of the separation efficiency of photoinduced electron-hole pairs, which was, in turn, due to the formation of heterojunctions between CN-200 and Z-500 interfaces. Thus, this study proposes the application of electron-beam irradiation technology for the modification of photocatalytic materials and the improvement of photocatalytic performance.
More
Translated text
Key words
g-C3N4,ZnO,electron beam irradiation,photocatalytic performance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined