Study on Effects of Refining Slag on Properties and Hydration of Cemented Solid Waste-Based Backfill.

Materials (Basel, Switzerland)(2022)

引用 0|浏览2
暂无评分
摘要
This study used refining slag (RS), ground granulated blast furnace slag (GGBS), steel slag (SS), and desulfurized gypsum (DG) to prepare a mine-filling cementitious material. The developed cementitious material and tailings sand were mixed to prepare a novel mine backfill material with better performance and a lower cost. The macroscopic properties and hydration mechanism of the cemented solid waste-based backfill were investigated when RS content was 0, 5%, 10%, 15%, 20%, 30% and 40%. The results showed that introducing RS could reduce the bleeding rate and shorten the setting time of backfill slurry while significantly enhancing the 3-day compressive strength of backfill. Compared to JL-0, the bleeding rate decreased by 50.3% as the RS content was raised to 15%, while the setting time was shortened by 36.5%, and the 3-day compressive strength increased by 4.3 times. As the RS content did not exceed 20%, the 28-day compressive strength of the backfill was not lower than that of the cement backfill (4.3 MPa). The results of microanalysis (including XRD, FT-IR, SEM, TG-DSC, and heat of hydration) revealed that the hydration products of the RS-GGBS-SS-DG quaternary material are primarily C-(A)-S-H gels and AFt. The main effect of RS is to improve the content of aluminates, accelerating and increasing the production of AFt, thus leading to faster overall hydration. This research can provide data support for the application of RS in the mine-filling field. Applying quaternary solid waste-based cementitious materials in the mine-filling field has good economic benefits.
更多
查看译文
关键词
cemented backfill,hydration kinetics,refining slag,solid-waste cementitious material
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要