AutoGater: A Weakly Supervised Neural Network Model to Gate Cells in Flow Cytometric Analyses

bioRxiv (Cold Spring Harbor Laboratory)(2022)

Cited 0|Views11
No score
Abstract
Flow cytometry is a useful and efficient method for the rapid characterization of a cell population based on the optical and fluorescence properties of individual cells. Ideally, the cell population would consist of only healthy viable cells as dead cells can confound the analysis. Thus, separating out healthy cells from dying and dead cells, and any potential debris, is an important first step in analysis of flow cytometry data. While gating of debris can be conducted using measured optical properties, identifying dead and dying cells often requires utilizing fluorescent stains (e.g. Sytox, a nucleic acid stain that stains cells with compromised cell membranes) to identify cells that should be excluded from downstream analyses. These stains prolong the experimental preparation process and use a flow cytometer’s fluorescence channels that could otherwise be used to measure additional fluorescent markers within the cells (e.g. reporter proteins). Here we outline a stain-free method for identifying viable cells for downstream processing by gating cells that are dying or dead. AutoGater is a weakly supervised deep learning model that can separate healthy populations from unhealthy and dead populations using only light-scatter channels. In addition, AutoGater harmonizes different measurements of dead cells such as Sytox and CFUs. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
Key words
autogater cells,flow
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined