Polymorphisms Predicting Phylogenyin Hepatitis B Virus (HBV)

Virus Evolution(2022)

Cited 0|Views4
No score
Abstract
Hepatitis B viruses (HBV) are compact viruses with circular genomes of ~3.2kb in length. Four genes (HBx, Core, Surface and Polymerase) generating seven products are encoded on overlapping reading frames. Ten HBV genotypes have been characterised (A-J), which may account for differences in transmission, outcomes of infection, and treatment response. However, HBV genotyping is rarely undertaken, and sequencing remains inaccessible in many settings. We set out to assess which amino acid (aa) sites in the HBV genome are most informative for determining genotype, using a machine learning approach based on random forest algorithms (RFA). We downloaded 5496 genome-length HBV sequences from a public database, excluding recombinant sequences, regions with conserved indels, and genotypes I and J. Each gene was separately translated into aa, and the proteins concatenated into a single sequence (length 1614aa). Using RFA, we searched for aa sites predictive of genotype, and assessed co-variation among the sites with a Mutual Information (MI)-based method. We were able to discriminate confidently between genotypes A-H using 10 aa sites. 5/10 sites were identified in Polymerase (Pol), of which 4/5 were in the spacer domain, and one in reverse transcriptase. A further 4/10 sites were located in Surface protein, and a single site in HBx. There were no informative sites in Core. Properties of the aa were generally not conserved between genotypes at informative sites. Among the highest co-varying pairs of sites, there were 55 pairs that included one of these ‘top 10’ sites. Overall, we have shown that RFA analysis is a powerful tool for identifying aa sites that predict HBV lineage, with an unexpectedly high number of such sites in the spacer domain, which has conventionally been viewed as unimportant for structure or function. Our results improve ease of genotype prediction from limited regions of HBV sequence, and may have future application in understanding HBV evolution.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined