Influence of strain on an ultrafast phase transition.

Nanoscale(2022)

引用 0|浏览13
暂无评分
摘要
The flexibility of 2D materials combined with properties highly sensitive to strain makes strain engineering a promising avenue for manipulation of both structure and function. Here we investigate the influence of strain, associated with microstructural defects, on a photo-induced structural phase transition in Td-WTe2. Above threshold photoexcitation of uniform, non-strained, samples result in an orthorhombic Td to a metastable orthorhombic 1T* phase transition facilitated by shear displacements of the WTe2 layers along the b axis of the material. In samples prepared with wrinkle defects WTe2 continue its trajectory through a secondary transition that shears the unit cell along the c axis towards a metastable monoclinic 1T' phase. The time scales and microstructural evolution associated with the transition and its subsequent recovery to the 1T* phase is followed in detail by a combination of ultrafast electron diffraction and microscopy. Our findings show how local strain fields can be employed for tailoring phase change dynamics in ultrafast optically driven processes with potential applications in phase change devices.
更多
查看译文
关键词
phase transition,strain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要