Edge-Assisted Multi-Layer Offloading Optimization of LEO Satellite-Terrestrial Integrated Networks

IEEE Journal on Selected Areas in Communications(2022)

引用 20|浏览25
暂无评分
摘要
Sixth-Generation (6G) technologies will revolutionize the wireless ecosystem by enabling the delivery of futuristic services through satellite-terrestrial integrated networks (STINs). As the number of subscribers connected to STINs increases, it becomes necessary to investigate whether the edge computing paradigm may be applied to low Earth orbit satellite (LEOS) networks for supporting computation-intensive and delay-sensitive services for anyone, anywhere, and at any time. Inspired by this research dilemma, we investigate a LEOS edge-assisted multi-layer multi-access edge computing (MEC) system. In this system, the MEC philosophy will be extended to LEOS, for defining the LEOS edge, in order to enhance the coverage of the multi-layer MEC system and address the users’ computing problems both in congested and isolated areas. We then design its operating offloading framework and explore its feasible implementation methodologies. In this context, we formulate a joint optimization problem for the associated communication and computation resource allocation for minimizing the overall energy dissipation of our LEOS edge-assisted multi-layer MEC system while maintaining a low computing latency. To solve the optimization problem effectively, we adopt the classic alternating optimization (AO) method for decomposing the original problem and then solve each sub-problem using low-complexity iterative algorithms. Finally, our numerical results show that the offloading scheme conceived achieves low computing latency and energy dissipation compared to the state-of-the-art solutions, a single layer MEC supported by LEOS or base stations (BS).
更多
查看译文
关键词
Satellite-terrestrial integrated network,LEO satellite,multi-access edge computing,6G
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要