Integer syndrome decoding in the presence of noise

Cryptography and Communications(2024)

引用 1|浏览8
暂无评分
摘要
Code-based cryptography received attention after the NIST started the post-quantum cryptography standardization process in 2016. A central NP-hard problem is the binary syndrome decoding problem, on which the security of many code-based cryptosystems lies. The best known methods to solve this problem all stem from the information-set decoding strategy, first introduced by Prange in 1962. A recent line of work considers augmented versions of this strategy, with hints typically provided by side-channel information. In this work, we consider the integer syndrome decoding problem, where the integer syndrome is available but might be noisy. We study how the performance of the decoder is affected by the noise. First we identify the noise model as being close to a centered in zero binomial distribution. Second we model the probability of success of the ISD-score decoder in presence of a binomial noise. Third, we demonstrate that with high probability our algorithm finds the solution as long as the noise parameter d is linear in t (the Hamming weight of the solution) and t is sub-linear in the code-length. We provide experimental results on cryptographic parameters for the BIKE and Classic McEliece cryptosystems, which are both candidates for the fourth round of the NIST standardization process.
更多
查看译文
关键词
Code-based cryptography,Syndrome decoding problem,Information-set decoding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要