Recovering Rainbow's Secret Key with a First-Order Fault Attack.

IACR Cryptology ePrint Archive(2022)

引用 1|浏览4
暂无评分
摘要
Rainbow, a multivariate digital signature scheme and third round finalist in NIST’s PQC standardization process, is a layered version of the unbalanced oil and vinegar (UOV) scheme. We introduce two fault attacks, each focusing on one of the secret linear transformations T and S used to hide the structure of the central map in Rainbow. The first fault attack reveals a part of T and we prove that this is enough to achieve a full key recovery with negligible computational effort for all parameter sets of Rainbow. The second one unveils S , which can be extended to a full key recovery by the Kipnis-Shamir attack. Our work exposes the secret transformations used in multivariate signature schemes as an important attack vector for physical attacks, which need further protection. Our attacks target the optimized Cortex-M4 implementation and require only first-order instruction skips and a moderate amount of faulted signatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要