Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance

ENVIRONMENTAL POLLUTION(2023)

Cited 11|Views12
No score
Abstract
The combined effects of graphene and biochar for enhanced adsorption of organic pollutants have not been demonstrated yet. Therefore, the mechanisms of graphene-modified biochar synthesis and its application to adsorption of contaminants remain unclear. In this study, the effect of flake-size graphene on biochar modification and its bisphenol S (BPS) adsorption performance was explored for the first time. Three sizes of graphene oxide were used as the precursor to prepare graphene/biochar composites using pyrolysis. It was found that the graphene with a small flake size was interspersed in the macropores of biochar, while the biochar was completely or mostly wrapped by the large-sized graphene sheet, which effectively prevented the agglomeration and pore blockage of biochar. Large-flake graphene oxide modified biochar (LGB) showed the highest adsorption capacity towards BPS, exhibiting 2.8 times higher adsorption than pristine biochar. Density functional theory (DFT) calculation suggested that the maximum diffusion barrier of O atoms in graphene coated cellulose (most frequently used biochar representative) could be reduced significantly (similar to 46%) at pyrolysis temperature of 873 K. Taking the advantage of small amount of graphene and enhanced adsorption performance, LGB could be a promising adsorbent for the removal of certain organic pollutants from wastewater and is conducive for the development of high-valued biochar modification.
More
Translated text
Key words
Graphene oxide,Engineered biochar,Adsorption,Bisphenol S,Water treatment
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined