Systematic evaluation of anatomical details on transcranial electric stimulation and transcranial magnetic stimulation induced electric fields in a non-human primate model

biorxiv(2022)

引用 0|浏览4
暂无评分
摘要
Non-human primates (NHPs) have become key for translational research in noninvasive brain stimulation (NIBS). However, in order to create comparable stimulation conditions to humans it is vital to evaluate and match electric fields across species. Numerical models to simulate electric fields are an important tool for experimental planning in NHPs and translation to human studies. It is thus essential to evaluate how anatomical details in NHP models affect NIBS electric fields. Here, we create a highly accurate head model of a non-human primate (NHP) from 10.5 T MR data. We systematically evaluate how muscle tissue and head size (due to different MRI fields of view) affect simulation results in transcranial electric and magnetic stimulation (TES and TMS). Our findings indicate that the inclusion of muscle can affect TES electric field strength up to 29.5% while TMS is largely unaffected. Additionally, comparing a full head model to a cropped head model illustrates the impact of head size on electric fields for both TES and TMS. We find opposing effects between TES and TMS with an increase up to 13.5% for TES and a decrease up to 21.5% for TMS for the cropped head model compared to the full head model. Our results provide important insights into the level of anatomical detail needed for NHP head models and can inform future translational efforts for NIBS studies. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要