Tuning the Fe/Co ratio towards a bimetallic Prussian blue analogue for the ultrasensitive electrochemical sensing of 5-hydroxytryptamine.

Talanta(2022)

引用 4|浏览20
暂无评分
摘要
Lack of highly efficient, inexpensive, and easily available catalysts severely limits the practical applicability of electrochemically sensing assay towards 5-hydroxytryptamine (5-HT). Herein, four kinds of Fe-Co bimetallic Prussian blue analogues (FeCo-PBAs) with different molar ratios of Fe to Co were prepared using a simple coprecipitation method. Interestingly, Fe(III) in K3 [Fe(CN)6] can be reduced to Fe(II) by adding trisodium citrate dehydrate, which could offer a new clue to synthesize PBAs with Fe(II) core ions. With the optimizational FeCo-PBA synthesized at a 0.5/1 M ratio of Fe to Co as an electrocatalyst, the constructed sensor shows excellent comprehensive performance for the 5-HT assay with a high sensitivity of 0.856 μA μM-1 and an ultralow detection limit of 8.4 nM. Under the optimum conditions, linearity was obtained in the ranges of 0.1-10.0 μM and 10.0-200.0 μM and preferable recoveries ranged from 97.8% to 103.0% with relative standard deviation (RSD) < 4.0%. The integrated properties of FeCo-PBA can be comparable to previously reported electrocatalysts for the 5-HT assay including noble metal-based and expensive carbon (graphene and carbon nanotubes)-based electrocatalysts. The proposed sensor also exhibits outstanding selectivity, reproducibility, and practicality for real sample analyses. This work is the first report on the PBA-based sensor for the 5-HT assay, verifying the practicability of this high-performance sensor for the 5-HT assay.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要