LncRNA AC108925 promotes osteoblast differentiation of tendon-derived stem cells by targeting miR-146a-3p

Pathology - Research and Practice(2023)

Cited 0|Views14
No score
Abstract
It has been reported that tendon-derived stem cells(TDSCs) conduce to the ostosis in tendon diseases, and the molecular mechanism needs to be discussed. To investigate the function and mechanism of LncRNA in tendinopathy. Tendon of tendinopathy patients and health controls were obtained, and sequencing analysis have been performed to detect the significantly expressed genes and non-coding RNAs. Moreover, to further discuss LncRNA AC108925 in tendinopathy, tendinopathy animal models have been established, and the expression of LncRNA AC108925 expression was examined by RT-qPCR methods. Furthermore, hTDSCs have been treated by osteogenic medium, and the modulating function of LncRNA AC108925 on the osteoblast differentiation of hTDSCs have been examined. Sequencing analysis showed that AC108925 a dramatically elevated LncRNA, and results of animal and cells studies confirmed the finding. Knockdown AC108925 inhibited the osteogenic differentiation of osteogenic medium treated TDSCs by decreasing the expression of osteogenic markers. Furthermore, miR-146a-3p is a target of AC108925 in TDSCs, and miR-146a-3p is a negative modulator of osteogenic differentiation of hTDSCs by inhibiting the effects of AC108925 shRNA on osteogenic differentiation of hTDSCs. AC108925 can regulate the osteogenic differentiation of hTDSCs via regulating the miR-146a-3p. Targeting the AC108925/miR-146a-3p axis might be a latent way to treat tendinopathy.
More
Translated text
Key words
Tendinopathy,Tendon-derived stem cell,LncRNA AC108925,Osteogenic differentiation,MiR-146a-3p
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined