Feeding after spawning and energy balance at spawning are associated with repeat spawning interval in steelhead trout.

General and comparative endocrinology(2022)

引用 2|浏览4
暂无评分
摘要
Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要