Adaptive and Efficient Qubit Allocation Using Reinforcement Learning in Quantum Networks

IEEE Network(2022)

引用 0|浏览37
暂无评分
摘要
Quantum entanglement brings high-speed and inherently privacy-preserving transmission for information communication in quantum networks. The qubit scarcity is an important issue that cannot be ignored in quantum networks due to the limited storage capacity of quantum devices, the short lifespan of qubits, and so on. In this article, we first formulate the qubit competition problem as the Cooperative-Qubit-Allocation-Problem (CQAP) by taking into account both the waiting time and the fidelity of end-to-end entanglement with the given transmission link set. We then model the CQAP as a Markov Decision Process (MDP) and adopt a Reinforcement Learning (RL) algorithm to self-adaptively and cooperatively allocate qubits among quantum repeaters. Further, we introduce an Active Learning (AL) algorithm to improve the efficiency of the RL algorithm by reducing its trial-error times. Simulation results demonstrate that our proposed algorithm outperforms the benchmark algorithms, with 23.5 ms reduction on the average waiting time and 19.2 improvement on the average path maturity degree, respectively.
更多
查看译文
关键词
Training, Quantum entanglement, Heuristic algorithms, Simulation, Qubit, Training data, Reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要