Synthesis and Application of Low Molecular Weight PEI-Based Copolymers for siRNA Delivery with Smart Polymer Blends.

Macromolecular bioscience(2023)

引用 1|浏览14
暂无评分
摘要
Polyethylenimine (PEI) is a commonly used cationic polymer for small-interfering RNA (siRNA) delivery due to its high transfection efficiency at low commercial cost. However, high molecular weight PEI is cytotoxic and thus, its practical application is limited. In this study, different formulations of low molecular weight PEI (LMW-PEI) based copolymers polyethylenimine-g-polycaprolactone (PEI-PCL) (800 Da-40 kDa) and PEI-PCL-PEI (5-5-5 kDa) blended with or without polyethylene glycol-b-polycaprolactone (PEG-PCL) (5 kDa-4 kDa) are investigated to prepare nanoparticles via nanoprecipitation using a solvent displacement method with sizes ≈100 nm. PEG-PCL can stabilize the nanoparticles, improve their biocompatibility, and extend their circulation time in vivo. The nanoparticles composed of PEI-PCL-PEI and PEG-PCL show higher siRNA encapsulation efficiency than PEI-PCL/PEG-PCL based nanoparticles at low N/P ratios, higher cellular uptake, and a gene silencing efficiency of ≈40% as a result of the higher molecular weight PEI blocks. These results suggest that the PEI-PCL-PEI/PEG-PCL nanoparticle system could be a promising vehicle for siRNA delivery at minimal synthetic effort.
更多
查看译文
关键词
low molecular weight polyethylenimine,nanoprecipitation,polyethylene glycol-b-polycaprolactone,siRNA delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要