Neutron detection and application with a novel 3D-projection scintillator tracker in the future long-baseline neutrino oscillation experiments

S. Gwon, P. Granger,G. Yang, S. Bolognesi,T. Cai, M. Danilov, A. Delbart,A. De Roeck,S. Dolan,G. Eurin, R. F. Razakamiandra,S. Fedotov,G. Fiorentini Aguirre, R. Flight, R. Gran,C. Ha,C. K. Jung,K. Y. Jung, S. Kettell,M. Khabibullin,A. Khotjantsev, M. Kordosky,Y. Kudenko,T. Kutter, J. Maneira,S. Manly,D. A. Martinez Caicedo,C. Mauger, K. McFarland,C. McGrew, A. Mefodev,O. Mineev, D. Naples, A. Olivier,V. Paolone,S. Prasad,C. Riccio,J. Rodriguez Rondon,D. Sgalaberna, A. Sitraka, K. Siyeon, N. Skrobova, H. Su,S. Suvorov, A. Teklu,M. Tzanov,E. Valencia, K. Wood,E. Worcester,N. Yershov

arxiv(2022)

引用 0|浏览35
暂无评分
摘要
Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a feed-down of the detected neutrino energy compared to the true neutrino energy. A novel 3D\textcolor{black}{-}projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The $\bar{\nu}_{\mu}$ interactions tend to produce neutrons in the final state. By inferring the neutron kinetic energy, the $\bar{\nu}_{\mu}$ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This paper shows the detector's ability to reconstruct neutron kinetic energy and the $\bar{\nu}_{\mu}$ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state.
更多
查看译文
关键词
oscillation experiments,d-projection,long-baseline
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要