谷歌浏览器插件
订阅小程序
在清言上使用

Local canonical labeling of Erd\H{o}s--R\'enyi random graphs

arxiv(2022)

引用 0|浏览14
暂无评分
摘要
We study local canonical labeling algorithms on an Erd\H{o}s--R\'enyi random graph $G(n,p_n)$. A canonical labeling algorithm assigns a unique label to each vertex of an unlabeled graph such that the labels are invariant under isomorphism. Here we focus on local algorithms, where the label of each vertex depends only on its low-depth neighborhood. Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. Our first result shows that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. We also discuss implications for random graph isomorphism and shotgun assembly of random graphs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要