Hydrophilic Surface Modification of Cationic Unimolecular Bottlebrush Vectors Moderate pDNA and RNP Bottleplex Stability and Delivery Efficacy

BIOMACROMOLECULES(2022)

引用 3|浏览2
暂无评分
摘要
A cationic unimolecular bottlebrush polymer with chemically modified end-groups was synthesized to understand the impact of hydrophilicity on colloidal stability, nucleic acid delivery performance, and toxicity. The bottlebrush polymer template was synthesized using grafting-through techniques and was therefore composed of a polynorbornene backbone with poly(2(dimethylamino)ethyl methacrylate) side chains with dodecyl trithiocarbonate end-groups. Postpolymerization modification was performed to fully remove the end-groups or install hydroxy and methoxy poly(ethylene glycol) functional groups on the bottlebrush exterior. The bottlebrush family was preformulated with biological payloads of pDNA and CRISPR-Cas9 RNP in both water and PBS to understand binding, aggregation kinetics, cytotoxicity, and delivery efficacy. Increasing end-group hydrophilicity and preformulation of bottleplexes in PBS increased colloidal stability and cellular viability; however, this did not always result in increased transfection efficiency. The bottlebrush family exemplifies how formulation conditions, polymer loading, and end-group functionality of bottlebrushes can be tuned to balance expression with cytotoxicity ratios and result in enhanced overall performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要