Locally Fluorinated Electrolyte Medium Layer for High-Performance Anode-Free Li-Metal Batteries.

ACS applied materials & interfaces(2022)

引用 3|浏览7
暂无评分
摘要
Low cycling Coulombic efficiency (CE) and messy Li dendrite growth problems have greatly hindered the development of anode-free Li-metal batteries (AFLBs). Thus, functional electrolytes for uniform lithium deposition and lithium/electrolyte side reaction suppression are desired. Here, we report a locally fluorinated electrolyte (LFE) medium layer surrounding Cu foils to tailor the chemical compositions of the solid-electrolyte interphase (SEI) in AFLBs for inhibiting the immoderate Li dendrite growth and to suppress the interfacial reaction. This LFE consists of highly concentrated LiTFSI dissolved in a fluoroethylene carbonate and/or succinonitrile plastic mixture. The CE of Cu||LiNiCoMnO (NCM811) AFLB increased to a high level of 99% as envisaged, and the cycling ability was also highly improved. These improvements are facilitated by the formation of a uniform, dense, and LiF-rich SEI. LiF possesses high interfacial energy at the LiF/Li interface, resulting in a more uniform Li deposition process as proved by density functional theory (DFT) calculation results. This work provides a simple yet utility tech for the enhancement of future high-energy-density AFLBs.
更多
查看译文
关键词
LiF,Ni-rich cathode,anode-free lithium batteries,cryo-transmission electron microscopy,lithium dendrite,locally fluorinated electrolyte,solid-electrolyte interphase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要