Inflammatory Chemokine Receptors Support Inflammatory Macrophage and Dendritic Cell Maturation.

ImmunoHorizons(2022)

Cited 0|Views12
No score
Abstract
Dendritic cells form clusters in vivo, but the mechanism behind this has not been determined. In this article, we demonstrate that monocytes from mice deficient in the chemokine receptors CCR1, CCR2, CCR3, and CCR5 display reduced clustering in vitro, which is associated with impaired dendritic cell and macrophage differentiation. We further show that the differentiating cells themselves produce ligands for these receptors that function, in a redundant manner, to regulate cell clustering. Deletion of, or pharmacological blockade of, more than one of these receptors is required to impair clustering and differentiation. Our data show that chemokines and their receptors support clustering by increasing expression of, and activating, cell-surface integrins, which are associated with cell-cell interactions and, in the context of monocyte differentiation, with reduced expression of Foxp1, a known transcriptional suppressor of monocyte differentiation. Our data therefore provide a mechanism whereby chemokines and their receptors typically found in inflammatory environments can interact to promote murine monocyte differentiation to macrophages and dendritic cells.
More
Translated text
Key words
dendritic cell maturation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined