Numerical analysis of the highly non-linear and ultra-sensitive modified core of a photonic crystal fiber sensor for detection of liquid analytes

Journal of the Optical Society of America B(2023)

引用 5|浏览3
暂无评分
摘要
A design of the highly non-linear and ultra-sensitive modified core of a photonic crystal fiber (PCF) sensor is reported for the detection of various liquid analytes. The sensor design comprises three rings of a hexagonal lattice around the liquid-infiltrated hollow core. A steric-shaped hollow core design in PCF effectively optimizes the sensor's sensitivity and performance. The design is analyzed numerically by using the full vector finite element method with perfectly matched layers to find a rigorous solution. The proposed PCF sensor exhibits ultra-high relative sensitivity, a high power fraction, high non-linearity coefficient, low confinement loss, ultra-low chromatic dispersion, compact effective mode area, and single-mode operation in a wider wavelength range, i.e., within visible and infrared wavelength regimes. At an operating wavelength of 1.0 mu m, optimum relative sensitivities of 96.37%, 97.40%, and 99.82% with high non-linear coefficients of 78.0 W-1 km-1, 66.09 W-1 km-1, and 62.57 W-1 km-1 and extremely low confinement loss of similar to 10-10 dB/m are obtained for water, ethanol, and benzene analytes, respectively. Further, waveguiding characteristics of the PCF sensor endorse its usage for a range of liquid analyte detections. It is a simple design and can be fabricated using existing manufacturing technologies. (c) 2022 Optica Publishing Group
更多
查看译文
关键词
photonic crystal fiber sensor,non-linear,ultra-sensitive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要