Microbial pyrazine diamine is a novel electrolyte additive that shields high-voltage LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes

Scientific reports(2022)

Cited 0|Views3
No score
Abstract
The uncontrolled oxidative decomposition of electrolyte while operating at high potential (> 4.2 V vs Li/Li + ) severely affects the performance of high-energy density transition metal oxide-based materials as cathodes in Li-ion batteries. To restrict this degradative response of electrolyte species, the need for functional molecules as electrolyte additives that can restrict the electrolytic decomposition is imminent. In this regard, bio-derived molecules are cost-effective, environment friendly, and non-toxic alternatives to their synthetic counter parts. Here, we report the application of microbially synthesized 2,5-dimethyl-3,6-bis(4-aminobenzyl)pyrazine (DMBAP) as an electrolyte additive that stabilizes high-voltage (4.5 V vs Li/Li + ) LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathodes. The high-lying highest occupied molecular orbital of bio-additive (DMBAP) inspires its sacrificial in situ oxidative decomposition to form an organic passivation layer on the cathode surface. This restricts the excessive electrolyte decomposition to form a tailored cathode electrolyte interface to administer cyclic stability and enhance the capacity retention of the cathode.
More
Translated text
Key words
Energy science and technology,Materials science,Microbiology,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined