A Machine Learning Model for Detection of Coronary Artery Disease Using Noninvasive Clinical Parameters.

Life (Basel, Switzerland)(2022)

引用 5|浏览5
暂无评分
摘要
Coronary artery disease (CAD) is one of the most prevalent causes of death worldwide. The early diagnosis and timely medical care of cardiovascular patients can greatly prevent death and reduce the cost of treatments associated with CAD. In this study, we attempt to prepare a new model for early CAD diagnosis. The proposed model can diagnose CAD based on clinical data and without the use of an invasive procedure. In this paper, machine-learning (ML) techniques were used for the early detection of CAD, which were applied to a CAD dataset known as Z-Alizadeh Sani. Since this dataset has 54 features, the Pearson correlation feature selection method was conducted to identify the most effective features. Then, six machine learning techniques including decision tree, deep learning, logistic regression, random forest, support vector machine (SVM), and Xgboost were employed based on a semi-random-partitioning framework. Applying Pearson feature selection to the dataset demonstrated that only eight features were the most effective for CAD diagnosis. The results of running the six machine-learning models on the selected features showed that logistic regression and SVM had the same performance with 95.45% accuracy, 95.91% sensitivity, 91.66% specificity, and a 96.90% F1 score. In addition, the ROC curve indicates a similar result regarding the AUC (0.98). Prediction is an important component of medical decision support systems. The results of the present study showed that feature selection has a high impact on machine-learning performance and, regardless of the evaluation metrics of the machine-learning models, determining the effective features is very important. However, SVM and Logistic Regression were designated as the best models according to our selected features.
更多
查看译文
关键词
coronary artery disease,early detection,machine learning,noninvasive clinical parameters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要