Human 3D Airway Tissue Models for Real-Time Microscopy: Visualizing Respiratory Virus Spreading.

Cells(2022)

引用 1|浏览16
暂无评分
摘要
Our knowledge about respiratory virus spreading is mostly based on monolayer cultures that hardly reflect the complex organization of the airway epithelium. Thus, there is a strong demand for biologically relevant models. One possibility to study virus spreading at the cellular level is real-time imaging. In an attempt to visualize virus spreading under somewhat more physiological conditions, Calu-3 cells and human primary fibroblasts were co-cultured submerged or as air-liquid interface (ALI). An influenza A virus (IAV) replicating well in cell culture, and carrying a red fluorescent protein (RFP) reporter gene was used for real-time imaging. Our three-dimensional (3D) models exhibited important characteristics of native airway epithelium including a basement membrane, tight junctions and, in ALI models, strong mucus production. In submerged models, first fluorescence signals appeared between 9 and 12 h post infection (hpi) with a low multiplicity of infection of 0.01. Virus spreading further proceeded in the immediate vicinity of infected cells. In ALI models, RFP was found at 22 hpi and later. Consequently, the progression of infection was delayed, in contrast to the submerged model. With these features, we believe that our 3D airway models can deliver new insights in the spreading of IAV and other respiratory viruses.
更多
查看译文
关键词
human 3D airway tissue model,respiratory virus,virus spreading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要