H4K20me3 controls Ash1-mediated H3K36me3 and transcriptional silencing in facultative heterochromatin

biorxiv(2022)

引用 1|浏览0
暂无评分
摘要
Facultative heterochromatin controls development and differentiation in many eukaryotes. In metazoans, plants, and many filamentous fungi, facultative heterochromatin is characterized by transcriptional repression and enrichment with nucleosomes that are trimethylated at histone H3 lysine 27 (H3K27me3). While loss of H3K27me3 results in derepression of transcriptional gene silencing in many species, additional up- and downstream layers of regulation are necessary to mediate control of transcription in chromosome regions enriched with H3K27me3. Here, we investigated the effects of one histone mark on histone H4, namely H4K20me3, in the fungus Zymoseptoria tritici, a globally important pathogen of wheat. Deletion of kmt5, the gene encoding the sole methyltransferase responsible for H4K20 methylation, resulted in global derepression of transcription, especially in regions of facultative heterochromatin. This finding explains our previous results where loss of H3K27me3 in kmt6 deletion strains alone was insufficient to alleviate transcriptional silencing in the same regions. Reversal of silencing in the absence of H4K20me3 not only affected genes but also a large number of novel, previously undetected, non-coding transcripts generated from regions of facultative heterochromatin on accessory chromosomes. Transcriptional activation in kmt5 deletion strains was accompanied by a complete loss of Ash1-mediated H3K36me3 and chromatin reorganization affecting H3K27me3 and H3K4me2 distribution in regions of facultative heterochromatin. Strains with a H4K20M mutation in the single histone H4 gene of Z. tritici recapitulated these chromatin changes, suggesting that H4K20me3 is essential for Ash1-mediated H3K36me3. The ∆kmt5 mutants we obtained are more sensitive to genotoxic stressors and both, ∆kmt5 and ∆ash1, showed a greatly increased rate of accessory chromosome losses. Taken together, our results provide insights into a novel, and unsuspected, mechanism controlling the assembly and maintenance of facultative heterochromatin. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要