Optrode recording of an entorhinal-cortical circuit in freely moving mice.

Biomedical optics express(2023)

引用 0|浏览2
暂无评分
摘要
The deep layers of medial entorhinal cortex (MEC) are considered a crucial station for spatial cognition and memory. The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive projections to brain cortical areas. However, the functional heterogeneity of these efferent neurons in MECVa is poorly understood, due to the difficulty of performing single-neuron activity recording from the narrow band of cell population while the animals are behaving. In the current study, we combined multi-electrode electrophysiological recording and optical stimulation to record cortical-projecting MECVa neurons at single-neuron resolution in freely moving mice. First, injection of a viral Cre-LoxP system was used to express channelrhodopsin-2 specifically in MECVa neurons that project to the medial part of the secondary visual cortex (V2M-projecting MECVa neurons). Then, a lightweight, self-made optrode was implanted into MECVa to identify the V2M-projecting MECVa neurons and to enable single-neuron activity recordings in mice performing the open field test and 8-arm radial maze. Our results demonstrate that optrode approach is an accessible and reliable method for single-neuron recording of V2M-projecting MECVa neurons in freely moving mice, paving the way for future circuit studies designed to characterize the activity of MECVa neurons during specific tasks.
更多
查看译文
关键词
entorhinal–cortical circuit,optrode recording,mice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要