AGO2a but not AGO2b mediates antiviral defense against infection of wild-type cucumber mosaic virus in tomato

biorxiv(2023)

引用 0|浏览0
暂无评分
摘要
Evolutionarily conserved antiviral RNA interference (RNAi) mediates a primary antiviral innate immunity preventing infection of broad-spectrum viruses in plants. However, the detailed mechanism in plants is still largely unknown, especially in important agricultural crops, including tomato. Varieties of pathogenic viruses evolve to possess viral suppressors of RNA silencing (VSRs) to suppress antiviral RNAi in the host. Due to the prevalence of VSRs, it is still unknown whether antiviral RNAi truly functions to prevent invasion by natural wild-type viruses in plants and animals. In this research, for the first time we applied CRISPR-Cas9 to generate ago2a, ago2b, or ago2ab mutants for two differentiated Solanum lycopersicum AGO2s, key effectors in antiviral RNAi. We found that AGO2a but not AGO2b was significantly induced to inhibit the propagation of not only VSR-deficient Cucumber mosaic virus (CMV) but also wild-type CMV-Fny in tomato; however, neither AGO2a nor AGO2b regulated disease induction after infection with either virus. Our findings firstly reveal a prominent role of AGO2a in antiviral RNAi innate immunity in tomato and demonstrate that antiviral RNAi evolves to defend against infection of natural wild-type CMV-Fny in tomato. However, AGO2a-mediated antiviral RNAi does not play major roles in promoting tolerance of tomato plants to CMV infection for maintaining health.
更多
查看译文
关键词
mosaic virus,antiviral defense,ago2b,wildtype cucumber,tomato
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要