Chrome Extension
WeChat Mini Program
Use on ChatGLM

Identification of nitrogen pollution sources and transport transformation processes in groundwater of different landforms using C, H, N, and O isotope techniques: an example from the lower Weihe River

Environmental science and pollution research international(2022)

Cited 1|Views22
No score
Abstract
Nitrogen pollution in groundwater is an environmental issue of global concern. Identifying nitrogen pollution sources and determining migration and transformation processes are the major ways to prevent and control nitrogen pollution in the groundwater on a regional scale. In this study, groundwater in the lower Wei River was investigated by combining multi-isotope tracing techniques with the SIAR hybrid model (source resolution) to trace the nitrate sources and their contribution rate to nitrogen pollution in groundwater of different geomorphological units, considering types of geomorphology as the units. The multi-isotope tracing technique allows dynamic analysis of nitrate sources, and the combination of this technology can improve the accuracy of nitrogen source traceability. The results indicated that the pH of the water bodies in the study area ranged from 6.83 to 8.01, which is neutral and weakly alkaline. The nitrogen pollution was mainly due to nitrates. The significant factors affecting nitrogen migration in groundwater are the geomorphological type, the chemical characteristics of the groundwater, and the age of the groundwater. Nitrogen migration and transformation processes in the study area were dominated by nitrification, and sources of nitrate pollution were mainly animal manure and domestic sewage (32.6%), followed by atmospheric deposition (26.8%), soil nitrogen (20.9%), and chemical fertilizer (19.7%). The main sources of nitrate in groundwater from river flats, alluvial plains, and loess tableland were animal manure and domestic sewage (43.7%), animal manure and domestic sewage (59.1%), and atmospheric deposition (55.5%), respectively. The result is mainly related to the different structural characteristics of various geomorphic units and the intensity of human activities. This study can provide a theoretical basis for the relevant agencies to develop plans to combat groundwater pollution. Graphical Abstract
More
Translated text
Key words
Groundwater,Landforms,Lower Weihe River,Nitrogen source identification,Nitrogen–oxygen dual-isotope tracing,SIAR
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined