Multiple-omics reveal the role of transcription factor bHLH130 during low nitrogen in apple rootstock.

Plant physiology(2022)

Cited 1|Views13
No score
Abstract
Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathway between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosynthesis in apple rootstocks under low nitrogen stress.
More
Translated text
Key words
apple rootstock,bHLH130,flavonoid biosynthesis,lignin biosynthesis,low nitrogen stress,metabolome,transcriptome
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined