Data-Driven Network Neuroscience: On Data Collection and Benchmark

arXiv (Cornell University)(2022)

引用 0|浏览14
暂无评分
摘要
This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 5 different sources, cover 3 neurodegenerative conditions, and consist of a total of 2,642 subjects. We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data.
更多
查看译文
关键词
network neuroscience,data-driven collection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要