谷歌浏览器插件
订阅小程序
在清言上使用

A Conservative Cartesian Cut Cell Method for the Solution of the Incompressible Navier-Stokes Equations on Staggered Meshes

HAL (Le Centre pour la Communication Scientifique Directe)(2022)

引用 0|浏览3
暂无评分
摘要
The treatment of complex geometries in Computational Fluid Dynamics applications is a challenging endeavor, which immersed boundary and cut-cell techniques can significantly simplify by alleviating the meshing process required by body-fitted meshes. These methods however introduce new challenges, as the formulation of accurate and well-posed discrete operators becomes nontrivial. Here, a conservative cartesian cut cell method is proposed for the solution of the incompressible Navier--Stokes equation on staggered Cartesian grids. Emphasis is set on the structure of the discrete operators, designed to mimic the properties of the continuous ones while retaining a nearest-neighbor stencil. For convective transport, a divergence is proposed and shown to also be skew-symmetric as long as the divergence-free condition is satisfied, ensuring mass, momentum and kinetic energy conservation (the latter in the inviscid limit). For viscous transport, conservative and symmetric operators are proposed for Dirichlet boundary conditions. Symmetry ensures the existence of a sink term (viscous dissipation) in the discrete kinetic energy budget, which is beneficial for stability. The cut-cell discretization possesses the much desired summation-by-parts (SBP) properties. In addition, it is fully conservative, mathematically provably stable and supports arbitrary geometries. The accuracy and robustness of the method are then demonstrated with flows past a circular cylinder and an airfoil.
更多
查看译文
关键词
navier-stokes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要