Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak

PLASMA SCIENCE & TECHNOLOGY(2022)

引用 1|浏览2
暂无评分
摘要
In order to broaden the range of the plasma parameters and provide experimental conditions for physical research into high-performance plasma, the development of the electron cyclotron resonance heating (ECRH) system for the J-TEXT tokamak was initiated in 2017. For the first stage, the ECRH system operated successfully with one 105 GHz/500 kW/1 s gyrotron in 2019. More than 400 kW electron cyclotron (EC) wave power has been injected into the plasma successfully, raising the core electron temperature to 1.5 keV. In 2022, another 105 GHz/500 kW/1 s gyrotron completed commissioning tests which signifies that the ECRH system could generate an EC wave power of 1 MW in total. Under the support of the ECRH system, various physical experiments have been carried out on J-TEXT. The electron thermal transport in ECRH plasmas has been investigated. When ECRH is turned on, the electron thermal diffusivity significantly increases. The runaway current is elevated when a disruption occurs during ECRH heating. When the injected EC wave power is 400 kW, the conversion efficiency of runaway current increases from 35% to 75%. Fast electron behavior is observed in electron cyclotron current drive (ECCD) plasma by the fast electron bremsstrahlung diagnostic (FEB). The increase in the FEB intensity implies that ECCD could generate fast electrons. A successful startup with a 200 kW ECW is achieved. With the upgrade of the ECRH system, the J-TEXT operational range could be expanded and further relevant research could be conducted.
更多
查看译文
关键词
ECRH,J-TEXT tokamak,electron thermal transport,runaway electron current,assisted start-up
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要