Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan

REMOTE SENSING(2022)

引用 2|浏览6
暂无评分
摘要
Earth observation (EO) data can provide large scale, high-resolution, and transferable methodologies to quantify the sprawl and vertical development of cities and are required to inform disaster risk reduction strategies for current and future populations. We synthesize the evolution of Bishkek, Kyrgyzstan, which experiences high seismic hazard, and derive new datasets relevant for seismic risk modeling. First, the urban sprawl of Bishkek (1979-2021) was quantified using built-up area land cover classifications. Second, a change detection methodology was applied to a declassified KeyHole Hexagon (KH-9) and Sentinel-2 satellite image to detect areas of redevelopment within Bishkek. Finally, vertical development was quantified using multi-temporal high-resolution stereo and tri-stereo satellite imagery, which were used in a deep learning workflow to extract buildings footprints and assign building heights. Our results revealed urban growth of 139 km(2) (92%) and redevelopment of similar to 26% (59 km(2)) of the city (1979-2021). The trends of urban growth were not reflected in all the open access global settlement footprint products that were evaluated. Building polygons that were extracted using a deep learning workflow applied to high-resolution tri-stereo (Pleiades) satellite imagery were most accurate (F1 score = 0.70) compared to stereo (WorldView-2) imagery (F1 score = 0.61). Similarly, building heights extracted using a Pleiades-derived digital elevation model were most comparable to independent measurements obtained using ICESat-2 altimetry data and field-measurements (normalized absolute median deviation < 1 m). Across different areas of the city, our analysis suggested rates of building growth in the region of 2000-10,700 buildings per year, which when combined with a trend of urban growth towards active faults highlights the importance of up-to-date building stock exposure data in areas of seismic hazard. Deep learning methodologies applied to high-resolution imagery are a valuable monitoring tool for building stock, especially where country-level or open-source datasets are lacking or incomplete.
更多
查看译文
关键词
urban growth,deep learning,building footprints,digital elevation models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要