Laser Range Scanners for Enabling Zero-overhead WiFi-based Indoor Localization System

ACM Transactions on Spatial Algorithms and Systems(2023)

引用 5|浏览35
暂无评分
摘要
Robust and accurate indoor localization has been the goal of several research efforts over the past decade. Toward achieving this goal, WiFi fingerprinting-based indoor localization systems have been proposed. However, fingerprinting involves significant effort—especially when done at high density—and needs to be repeated with any change in the deployment area. While a number of recent systems have been introduced to reduce the calibration effort, these still trade overhead with accuracy. This article presents LiPhi++ , an accurate system for enabling fingerprinting-based indoor localization systems without the associated data collection overhead. This is achieved by leveraging the sensing capability of transportable laser range scanners to automatically label WiFi scans, which can subsequently be used to build (and maintain) a fingerprint database. As part of its design, LiPhi++ leverages this database to train a deep long short-term memory network utilizing the signal strength history from the detected access points. LiPhi++ also has provisions for handling practical deployment issues, including the noisy wireless environment, heterogeneous devices, among others. Evaluation of LiPhi++ using Android phones in two realistic testbeds shows that it can match the performance of manual fingerprinting techniques under the same deployment conditions without the overhead associated with the traditional fingerprinting process. In addition, LiPhi++ improves upon the median localization accuracy obtained from crowdsourcing-based and fingerprinting-based systems by 284% and 418%, respectively, when tested with data collected a few months later.
更多
查看译文
关键词
Indoor localization, fingerprinting, WiFi, laser range scanners, deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要