Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut

Ecotoxicology and Environmental Safety(2022)

引用 0|浏览3
暂无评分
摘要
Recently, the chemical compound Bisphenol A (BPA) has been attracting worldwide attention due to its various toxic effects in animals, including reprotoxicity, neurotoxicity, hepatoxicity, and nephrotoxicity. Here, the midgut of adult Drosophila melanogaster (D. melanogaster), an invertebrate model organism, was employed to investigate the gastrointestinal toxicity of BPA in D. melanogaster and explore its underlying mechanisms of action in insects. As a result, exposure of flies to 0.5 mM BPA resulted in a dramatic morphological alteration of D. melanogaster midgut and decrease in survival rates and climbing ability of flies. Further study indicated that BPA induced high levels of oxidative stress in D. melanogaster midgut due to the imbalance between the production of reactive oxygen species and the activities of cellular antioxidant enzymes, including glutathione-S-transferase, catalase and superoxide dismutase. Oxidative stress induced by BPA then caused intestinal epithelial cell death and gut barrier dysfunction and elevated gut permeability, leading to oxidative injury of midgut epithelium. Antioxidant vitamin E alleviated midgut injury induced by BPA. Subsequently, BPA-induced oxidative injury of midgut further stimulated the proliferation of intestinal stem cell (ISC) and ISC-mediated midgut regeneration, but did not alter cell fate determination of ISCs in Drosophila midgut. Meanwhile, activation of Jun N-terminal kinase signal pathway was found to be required for BPA-induced cell death and tissue regeneration in midgut. Collectively, the present study provided additional evidence from an invertebrate model organism that BPA exposure induced gastrointestinal toxicity in D. melanogaster and further extended our understanding of the molecular mechanisms mediating BPA toxicity in insects.
更多
查看译文
关键词
Bisphenol A,Drosophila melanogaster,Midgut,Oxidative stress,Cell death,Tissue regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要