谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Recovery of Brain Network Integration and Segregation During the Loss and Recovery of Consciousness Induced by Sevoflurane

IEEE Transactions on Neural Systems and Rehabilitation Engineering(2022)

引用 2|浏览11
暂无评分
摘要
Anesthetic-induced loss of consciousness (LOC) has been studied using functional connectivity (FC) and functional network analysis (FNA), manifested as fragmentation of the whole-brain functional network. However, how the fragmented brain networks reversibly recover during the recovery of consciousness (ROC) remains vague. This study aims to investigate the changes in brain network structure during ROC, to better understand the network fragmentation during anesthesia, thus providing insights into consciousness monitoring. We analyzed EEG data recorded from 15 individuals anesthetized by sevoflurane. By investigating the properties of functional networks generated using different brain atlases and performing community detection for functional networks, we explored the changes in brain network structure to understand how fragmented brain networks recover during the ROC. We observed an overall larger FC magnitude during LOC than in the conscious state. The ROC was accompanied by the increasing binary network efficiency, decreasing FC magnitude, and decreasing community similarity with the functional atlas. Furthermore, we observed a negative correlation between modularity and community number ( $\text{p} < 0.001$ and $\textit {BF}_{{10}} >4000$ , linear regression test), in which modularity increased and community number decreased during ROC. Our results show that a larger FC magnitude reveals excessive synchronization of neuronal activities during LOC. The increasing binary network efficiency, decreasing community number, and decreasing community similarity indicate the recovery of functional network integration. The increasing modularity implies the recovery of functional network segregation during ROC. The results suggest the limitation of FC magnitude and modularity in monitoring anesthetized states and the potential of integrated information theory to evaluate consciousness.
更多
查看译文
关键词
Anesthesia,consciousness,electroencephalogram,functional networks,community detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要