Picosecond Spin-Orbit Torque Induced Coherent Magnetization Switching in a Ferromagnet

arxiv(2022)

引用 1|浏览23
暂无评分
摘要
Electrically controllable non-volatile magnetic memories show great potential for the replacement of semiconductor-based technologies. Recently there has been strong interest in spin-orbit torque (SOT) induced magnetization reversal due to the device's increased lifetime and speed of operation. However, recent SOT switching studies reveal an incubation delay in the ~ns range due to stochasticity in the nucleation of a magnetic domain during reversal. Here, we experimentally demonstrate ultrafast SOT-induced magnetization switching dynamics of a ferromagnet with no incubation delay by avoiding the nucleation process and driving the magnetization coherently. We employ an ultrafast photo-conducting switch and a co-planar strip line to generate and guide ~ps current pulses into the heavy metal/ferromagnet layer stack and induce ultrafast SOT. We use magneto-optical probing to investigate the magnetization switching dynamics with sub-picosecond time resolution. Depending on the relative current pulse and in-plane magnetic field polarities, we observe either an ultrafast demagnetization and subsequent recovery along with a SOT-induced precessional oscillation, or ultrafast SOT switching. The magnetization zero-crossing occurs in ~70 ps, which is approximately an order of magnitude faster than previous studies. Complete switching needs ~250 ps and is limited by the heat diffusion to the substrate. We use a macro-magnetic simulation coupled with an ultrafast heating model to analyze the effect of ultrafast thermal anisotropy torque and current-induced torque in the observed dynamics. Good agreement between our experimental results and the macro-spin model shows that the switching dynamics are coherent and present no noticeable incubation delay. Our work suggests a potential pathway toward dramatically increasing the writing speed of SOT magnetic random-access memory devices.
更多
查看译文
关键词
magnetization,torque,spin-orbit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要