From the Design of Novel Tri- and Tetra-Epoxidized Ionic Liquid Monomers to the End-of-Life of Multifunctional Degradable Epoxy Thermosets

ACS SUSTAINABLE CHEMISTRY & ENGINEERING(2022)

Cited 7|Views13
No score
Abstract
The design and development of multifunctional epoxy thermosets have recently stimulated continuous research on new degradable epoxy monomers. Herein, tri- and tetra-epoxidized imidazolium monomers were rationally designed with cleavable ester groups and synthesized on a multigram scale (up to 100 g), yielding room-temperature ionic liquids. These monomers were used as molecular building blocks and cured with three primary amine hardeners having different reactivities, leading to six different network architectures. Overall, the resulting epoxy-amine networks exhibit high thermal stability (>350 degrees C), excellent mechanical properties combined with a shape memory behavior, glass transition temperatures (T(g)s) from 55 to 120 degrees C, and complete degradability under mild conditions. In addition, nonpolarizable, all-atom molecular dynamics simulations were applied in order to investigate the molecular interactions during the polyaddition reaction-based polymerization and then to predict the thermomechanical and mechanical properties of the resulting networks. Thus, this work employs computational chemistry, organic synthesis, and material science to develop high-performance as well as environmentally friendly networks to meet the requirements of the circular economy.
More
Translated text
Key words
epoxy thermosets,molecular designing,molecular dynamic simulations,design for degradation,ionic liquid monomers,circular economy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined