Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review

Jie Zheng,Xiaoyu Song, Guijun Yang, Xiaochu Du,Xin Mei,Xiaodong Yang

REMOTE SENSING(2022)

Cited 8|Views32
No score
Abstract
Nitrogen(N) is one of the most important elements for crop growth and yield formation. Insufficient or excessive application of N fertilizers can limit crop yield and quality, especially as excessive N fertilizers can damage the environment and proper fertilizer application is essential for agricultural production. Efficient monitoring of crop N content is the basis of precise fertilizer management, and therefore to increase crop yields and improve crop quality. Remote sensing has gradually replaced traditional destructive methods such as field surveys and laboratory testing for crop N diagnosis. With the rapid advancement of remote sensing, a review on crop N monitoring is badly in need of better summary and discussion. The purpose of this study was to identify current research trends and key issues related to N monitoring. It begins with a comprehensive statistical analysis of the literature on remote sensing monitoring of N in rice and wheat over the past 20 years. The study then elucidates the physiological mechanisms and spectral response characteristics of remote sensing monitoring of canopy N. The following section summarizes the techniques and methods applied in remote sensing monitoring of canopy N from three aspects: remote sensing platforms for N monitoring; correlation between remotely sensed data and N status; and the retrieval methods of N status. The influential factors of N retrieval were then discussed with detailed classification. However, there remain challenges and problems that need to be addressed in the future studies, including the fusion of multisource data from different platforms, and the uncertainty of canopy N inversion in the presence of background factors. The newly developed hybrid model integrates the flexibility of machine learning with the mechanism of physical models. It could be problem solving, which has the advantages of processing multi-source data and reducing the interference of confounding factors. It could be the future development direction of crop N inversion with both high precision and universality.
More
Translated text
Key words
rice and wheat,nitrogen remote sensing,quantitative retrieval,research prospect
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined