Chrome Extension
WeChat Mini Program
Use on ChatGLM

An exact tunneling model and its application to transmission and reflection delay times

JOURNAL OF APPLIED PHYSICS(2022)

Cited 2|Views17
No score
Abstract
Electron emission into a nanogap is not instantaneous, which presents a difficulty in simulating ultra-fast behavior using particle models. A method of approximating the transmission and reflection delay (TARD) times of a wave packet interacting with barriers described by a delta function, a metal-insulator-metal (MIM, rectangular) barrier, and a Fowler Nordheim (FN, triangular) barrier is given and has application to simulation. It is based on the superposition of a finite number of exact basis states obtained from Schrodinger's equation, analogous to how quantum carpets are simulated. As a result, it can exactly and uniquely follow exponentially small tunneling currents. A Bohm-like trajectory is obtained from the time evolution of the density: it shows delay in both the transmitted and reflected packets that can be simply evaluated. The relations to prior studies of the analytic delta-function barrier and the Wigner distribution function (WDF) methods are described. A comparison of the TARD times is contrasted to alternate times in the Buttiker-Landauer (BL) and McColl-Hartman (MH) times; the MH approach is further reformulated explicitly in terms of Gamow factors to consider how the McColl-Hartman effect is to be related, particularly in the case of the FN barrier of field emission.
More
Translated text
Key words
exact tunneling model,reflection delay times,transmission
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined