Compact and very high dose-rate plasma focus radiation sources for medical applications

Radiation Physics and Chemistry(2022)

Cited 2|Views15
No score
Abstract
A Dense Plasma Focus (DPF) is a pulsed device able to produce a hot and dense short-lived plasma that could become a fast radiation source for diagnostic applications, external radiotherapy, or intra-operative radiation therapy. The plasma confinement phase, identified as “pinch”, lasts few tens of nanoseconds, during which thermonuclear temperatures and densities could be reached. When the DPF vacuum chamber is filled with gases such as nitrogen, the only significant output are self-collimated charged particle beams (electrons and ions in opposite direction). Using that electron beam, it is possible to devise an ultra-high dose-rate source, with applications for direct irradiation of a tumor bed or for photon conversion after the interaction with a suitable target. The ultra-high dose rate could have potential benefits in mitigating the intrinsic or acquired malignant cell radio-resistance, which can be considered the main obstacle to the long-term survival of a patient, also sparing healthy tissues. This is due as the faster the dose deposition, the more relevant is the radiobiological efficacy (as the tumor cells do not have the time to activate the sub-lethal damage repair mechanisms responsible of the radio-resistance). Due to the novelty of the fast source, the usual models cannot easily describe the biological outcomes, therefore new numerical approaches are needed for predicting the RBE outlined in these regimens.
More
Translated text
Key words
MCNP,MCDS,Ultra-high dose-rate,Sensitivity analysis,RBE
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined