Chrome Extension
WeChat Mini Program
Use on ChatGLM

Inhibition of PD-1 Alters the SHP1/2-PI3K/Akt Axis to Decrease M1 Polarization of Alveolar Macrophages in Lung Ischemia–Reperfusion Injury

Inflammation(2022)

Cited 4|Views9
No score
Abstract
Polarization of alveolar macrophages (AMs) into the M1 phenotype contributes to inflammatory responses and tissue damage that occur during lung ischemia–reperfusion injury (LIRI). Programmed cell death factor-1 (PD-1) regulates polarization of macrophages, but its role in LIRI is unknown. We examined the role of PD-1 in AM polarization in models of LIRI in vivo and in vitro . Adult Sprague–Dawley rats were subjected to ischemia–reperfusion with or without pretreatment with a PD-1 inhibitor, SHP1/2 inhibitor, or Akt activator. Lung tissue damage and infiltration by M1-type AMs were assessed. As an in vitro complement to the animal studies, rat alveolar macrophages in culture were subjected to oxygen/glucose deprivation and reoxygenation. Levels of SHP1/2 and Akt proteins were evaluated using Western blots, while levels of pro-inflammatory cytokines were measured using enzyme-linked immunosorbent assays. Injury upregulated PD-1 both in vivo and in vitro . Inhibiting PD-1 reduced the number of M1-type AMs, expression of SHP1 and SHP2, and levels of inflammatory cytokines. At the same time, it partially restored Akt activation. Similar results were observed after inhibition of SHP1/2 or activation of the PI3K/Akt pathway. PD-1 promotes polarization of AMs to the M1 phenotype and inflammatory responses through the SHP1/2-PI3K/Akt axis. Inhibiting PD-1 may be an effective therapeutic strategy to limit LIRI.
More
Translated text
Key words
PD-1,PI3K/Akt pathway.,inflammation,lung ischemia–reperfusion injury,macrophage polarization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined