Combination method of multiple molding technologies for reducing energy and carbon emission in the foundry industry

Sustainable Materials and Technologies(2022)

引用 2|浏览0
暂无评分
摘要
More advanced technologies are a critical way to achieve energy reduction and energy efficiency in the manufacturing industry. However, the foundry industry has not been sufficiently researched to use multiple molding technologies to reduce energy and carbon emissions. This study proposes a method for reducing energy consumption, carbon emissions, and improving resource efficiency in the foundry industry by combining multiple molding technologies into the modular design. More specifically, the proposed method analyses the indicators of resource utilization, energy consumption and effective energy degree per unit casting, carbon emissions and effective carbon emissions degree per unit casting (resource utilization, energy consumption and effective energy degree per unit casting, carbon emissions and effective carbon emissions degree per unit casting as indices of the ecological impact of the process solution). The experimental results show that the proposed composite mold modules have self-adaptability in forming. Using composite technologies, energy savings of about 8.92% and 6.99% per unit casting may be achieved in single small batch and batch casting manufacturing. Although the energy efficiency of casting is close to that of Additive Manufacturing, the time consumption per unit is much lower, which has significant application value. The results also show that the composite technologies save 6.99% energy in mass production, reduce 11.06% carbon emissions and 5.571 h in manufacturing per unit casting compared to traditional casting methods. Due to the long manufacturing time, the benefits of a single technology (sand 3D printing and sand mold milling) rapidly diminish in mass production. Therefore, composite technologies are a feasible solution to achieve sustainable development of the foundry industry.
更多
查看译文
关键词
Patternless casting,Energy and carbon emission model,Sustainable manufacturing,Foundry industry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要